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Relation between fractal dimension and roughness index for fractal surfaces
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This paper discusses the relation between fractal dimension and roughness index for fractal surfaces of
solids. The applicability of the relation to fracture of Mode III1Mode I complex loading is shown. The
applicability to other rough surfaces is discussed.@S1063-651X~99!09210-7#

PACS number~s!: 64.60.Ak, 62.20.Mk
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I. INTRODUCTION

Since Mandelbrot, Passoja, and Paulay@1# showed that
fractured surfaces are fractals in nature and that the fra
dimension of fractured surfaces correlates well with
toughness of materials, one of us@2# has analyzed the critica
crack extension force with the fractal model and pointed
that the true areas of the fractured surfaces in materials
actually larger than that calculated from a flat fractured s
face. Since then, many authors have done experiment
this problem@2–7#. Now, there seems no point in denyin
that the fractured surface is a fractal with self-affine prope
@8#. However, the fractal dimension of even the simplest s
affine fractals is not uniquely defined@9#. The difficulties
have been illustrated with the case of fractional Brown
motion by Voss@10# and Pietronero@11#. In his paper@10#,
Voss showed thatD522H in the box counting method an
1/H in the limiting case of the ‘‘coastline’’ method o
smaller scales and 1 on larger scales. Pietronero came t
same conclusion@11# by taking normal Brownian motion a
an example. It seems to be already known that the appa
fractal dimensionD of a self-affine surface, and the appare
Hurst exponentH of a self-similar surface, might be sca
dependent in principle. The questions are as follows: H
strong are their scale dependences quantitatively? Why
previous authors obtain nice linear relationships in dou
logarithmic plots both ofL(«) vs « and height vs minimum
distance? We need a quantitative analytical relation betw
D and H in materials. To our knowledge, no analytical e
pressions for quantitative analysis of experimental results
been done before.

In the case of fractured surfaces, the coastline met
seems nearer to a real situation and discussions on lim
cases are not enough to show the detailed quantitative
tions betweenD andH in the entire range of scales. In th
paper, we use the coastline method to show the quantita
relations betweenD andH and show some interesting find
ings that are not sufficient to be understood by qualitat
and approximate estimation. The applicability of the relat
to fracture of Mode III1Mode I complex loading is shown in
Sec. IV.

II. RELATION OF D TO H FOR SELF-AFFINE SURFACES

Since most real surfaces scale differently in the plane
fracture and in the vertical direction, it seems that they
PRE 601063-651X/99/60~5!/5121~5!/$15.00
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self-affine rather than self-similar. What will happen if on
measures the self-affine surfaces withD artificially, or de-
scribes the self-similar surfaces withH?

If the surface is self-affine, we may determineH from
double logarithmic plots ofDV(t) vs Dt, where V is the
vertical height andt is the horizontal axis. Then,H might be
a constant that is independent on the yardstick. On the o
hand, if we measure the fractal dimension of the surfa
artificially, theD value might be yardstick dependent. How
ever, in the earlier works on fracture@1,8#, constantD values
have been obtained in many cases, even though the con
of self-affine property of fractured surfaces has been
cepted generally. Straight lines on double-logarithmic pl
both onDV vs Dx @12,13# and onL(«) vs « @1,8# have been
obtained. The reason why may be explained in the followi

For a coastline, one may divide the curve intoN segments
by walking a ruler of sizel along the curve. The length alon
each segment is

l

t0
5F S Dt

t0
D 2

1S DV

t0
D 2G1/2

. ~1!

Using the relation

DVH

V0
5S Dt

t0
D H

5N2H ~2!

and the relationsl 05&t0 , V05t0 ,

& l

l 0
5

Dt

t0
F11S Dt

t0
D 2H22G1/2

. ~3!

Then,

NS l

l 0
D5S Dt

t0
D 21

5
1

&
S l

l 0
D 21F11S Dt

t0
D 2H22G1/2

, ~4!

NS l

l 0
D5S l

l 0
D 2D

. ~5!

Therefore,
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D512

lnF1

2 S 11S Dt

t0
D 2H22D G

2 lnS l

l 0
D ; ~6!

let

j5
1

2 F11S Dt

t0
D 2H22G

and from Eq.~3!, we obtain

DS H,
Dt

t0
D512F 11

2 lnS Dt

t0
D

ln j
G21

. ~7!

~i! WhenDt/t0!1, N5(Dt/t0)21'( l / l 0)21/H; and then
D51/H.

~ii ! When Dt/t051, D approaches the limiting valu
2/(11H).

Figure 1 shows the relationship ofD(H,Dt/t0) with l / l 0 .
In the double-logarithm plots, the dependence ofD with
D l / l 0 becomes weaker and weaker asH rises from 0.5 to 1.
One cannot judge whetherD is dependent on the yardstic
when theH value rises up to a certain value near unity~say
0.8,H,1! within the accuracy of measurements. In th
case, we cannot distinguish which, self-similarity or se
affinity, is better to describe the fractal surface. Therefore
the early works of fracture, nice fractal dimensions ha
been obtained in previous measurements~for example, see
@8#!.

Figure 2 shows the relationship ofL(D l / l 0) with l / l 0 . In
this figure,L( l / l 0) is calculated by (l / l 0)12D whereD( l ) is
calculated by Eq.~7!. Because ofD a function ofH and l,
L(H,l ) and l are not linear relations in double-logarithm
plots. From Fig. 2, the deviation of the linear relationship
larger whenH50.5 and smaller whenH50.8. L( l / l 0) is
independent ofl / l 0 whenH51. Similarly, asH approaches
1 ~say 0.8,H,1!, we cannot judge whether it is a curve
a straight line within the range of experimental error.

Moreover, the values ofL( l ) are points on theL vs l
double-logarithmic plots with various values ofH. The slope
of the curve does not have the meaning of fractal dimens

FIG. 1. Relationship ofD(H,Dt/t0) with l / l 0 .
-
n
e

n.

The real fractal dimension (12D) is the slope of the straigh
line connected to the point (L/L0 ,l / l 0) and the zero point
~0,0!.

III. RELATION OF H TO D FOR SELF-SIMILAR
SURFACES

On the other hand, if the fracture surface is of self-simi
structure, one may determineD from the double-logarithmic
plots of theL( l / l 0) and l / l 0 relationship. The value ofD
might be a constant and is independent ofl / l 0 . If one mea-
sures the roughness exponent of the surface, the valueH
might be yardstick dependent.

Now, with similar derivation, we have

H~ l ,D !511

lnF2S l

l 0
D 222D

21G
2 lnS Dt

t0
D . ~8!

~i! When l / l 0!1

H~l,D!5
1

D
1

ln 2

2ln SDt

t0
D'

1

D
. ~9!

~ii ! When l / l 051, the limiting value ofH( l ,D)52/D
21.

FIG. 2. Double common logarithmic relationship ofL( l / l 0)
with l / l 0 .

FIG. 3. Relationship ofH(D,l / l 0) with l / l 0 .
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Figure 3 shows the double-logarithmic plots ofH(D,l / l 0)
and l / l 0 . Similar to the above, the dependence ofH on l / l 0
becomes weaker and weaker asD approaches unity.

Figure 4 shows the double-logarithmic plots
DV(D,l / l 0) and Dt/t0 . As above, the deviation from
straight line is smaller and smaller whenD approaches unity

IV. THE APPLICABILITY OF THIS RELATIONSHIP
TO MODE III 1MODE I COMPLEX FRACTURE

It is well known that the fractured surfaces are self-affi
under Mode I deformation~see Fig. 6! @12#. Recently,
Daguier, Bouchaud, and Lapasset reported that even u
mode I loading, the crack front along the plane of cra
propagation is not self-affine, but self-similar in the case
quenched disorder of impurities@15#. We would like to re-
mind the reader that in the practical cases, there is a g
possibility of the presence of complex mode loadi
(Mode I1Mode III; Mode I1Mode II and so on!. Presence
of pure mode I or any other kind of mode loading is rare
it is under complex mode loading, we need to know whet
the surface is mainly self-affine or self-similar. Qualitati
understanding is not sufficient to explain these proces
Therefore, it is important to find out the quantitative relatio
ship of them and find a way to distinguish whether the s
face is mainly self-similar or self-affine experimentally. Fi
ure 5 is the schematic figure of three modes of deforma
in fracture.

Self-similarity implies the presence of ‘‘overhangs’’ i
the surface structure: to satisfy isotropy, scale invariance
all possible directions should be presented equally. There

FIG. 4. Double common logarithmic relationship ofDV(D,l / l 0)
with Dt/t0 .

FIG. 5. Modes of deformation in fracture.
er
k
f

at

f
r

s.
-
-

n

of
re

a number of known examples for such surfaces, includ
coastlines and the surface of silica colloid particles or ma
rials used for catalysis@14#. The perimeter of the island in
the slit-island method@1# is like the coastline, the prototyp
of self-similar scaling fractal. This was verified by the lin
earity in early experimental measurements of fractal dim
sions for the fractured surfaces@1–7#. In Mode II deforma-
tion, the type of deformation constructing a manifes
fracture surface for sliding the triadic Koch curve along thex
direction perpendicular to theyz plane on which a Koch
curve crack line exists is possible~also see Fig. 6!. A similar
situation may occur on thexzplane in Mode III deformation.
These processes do not need to avoid overhangs. Figure
a slant crack in the thickness direction. Whena50, it is a
pure Mode III loading; whena590°, it is a pure Mode I
loading. It is in mixed complex mode cases, when 0,a
,90°, where both Modes I and III loading exist. This is th
usual case that the plane of a through crack in labora
specimens is often tilted at an anglea with the plate surface
as shown in Fig. 7. This complex mode of loading leads
an important effect that, for the Poisson ratiog.0.25, the
minimum applied stress no longer occurs ata590° but at

FIG. 6. A triadic Koch surface.

FIG. 7. ~a! Schematic figure of Mode I and Mode III mixe
deformation crack;~b! roughnessDci and Dc' components~not
crack increments! produced byci and c' , which are two compo-
nents of crack front, respectively.
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angles determined by an arcsin function ofg. Thus, as the
crack tilts away from normal to the load or Mode I loadin
it becomes less impossible for the specimen to support
applied load@16#. In this case, the crack may not propaga
along its original direction; the tilted anglea may change to
a8. However, in this paper we do not go into the details
fracture mechanics. We assumea is the instantaneous tilte
angle. In the condition that the crack front line of Mode I
self-affine and that of Mode III is self-similar, the crack fro
line on theXY plane of Fig. 7 is a line of mixed self-affinity
and self-similarity. Mode I deformation produces the i
plane roughness of the self-affine crack front along thx
direction and Mode III deformation produces the in-pla
roughness of the self-similar deformation alongy, the direc-
tion of crack propagation, which is perpendicular to the
rection of the Mode III crack front component,z andx.

The relation ofL(H,Dc/c0) to Dc/c0 is given by the
vector sum of its two components:

LS H,
Dc

c0
D5H S Dc'

c'0
D 2@12D'~H' ,Dc' /c'0!#

sin2 a

1S Dci

ci0
D 2~12D i !

cos2 aJ 1/2

;S Dc

c0
D 12Deff

.

~10!

The relation of (DV/V)(D,Dc/c0) to Dc/c0 is also given by
the vector sum of its two components:

DV

V0
S D,

Dc

c0
D5H S Dc'

c'0
D 2H'

sin2 a

1S Dci

ci0
D 2H i~D i ,Dci /ci0!

cos2 aJ 1/2

;S Dc

c0
D Heff

,

~11!

wherec is the length of the crack under mixed mode loadin
Dc' andDci are its roughness components along thex andy
directions in thexy plane, respectively.

Let Dc/c05Dc' /c'05Dci /ci0 for simplicity and as-
sumeH'50.8 andD i51.3 for the case of usual roughne
of fractured surfaces. Relationships of Eqs.~10! and~11! are
shown in Figs. 8~a! and 8~b!, respectively. In Fig. 8~a!, the
relationship ofL vs Dc/c0 is linear whena50, which cor-
responds to the case of Mode III loading~pure self-similar!.
The relationship deviates from linearity whena increases
from 0 top/2, which corresponds to the case of Mode III a
Mode I mixed loading~self-similar mixed with self-affine!.
The relationship ofL vs Dc/c0 shows the maximum devia
tion from linearity in the case ofa equal top/2, which cor-
responds to pure Mode I loading~pure self-affine!. In Fig.
8~b!, the relationship ofDV/V0 vs Dc/c0 is linear whena
5p/2, which corresponds to the case of Mode I loadi
~pure self-affine!. The relationship deviates from linearit
when a decreases fromp/2 to 0, which corresponds to th
case of mode I and mode III mixed loading~self-affine
mixed with self-similar!. The curve ofDV/V0 vs Dc/c0
shows the maximum deviation from linearity in the case oa
equals to 0, which corresponds to pure Mode III loadi
~pure self-similar!. Moreover, from Fig. 8~a!, we may esti-
e

f

-

.

mate the approximate slope of the curve in the case ofp/2 at
the small scale range. It isD51.226, which is just between
1.2 (22H) and 1.25 (1/H). From Fig. 8~b!, we may also
estimate the approximate slope of the curve in the case
a50 at the small scale range. It is 0.727, which is just b
tween 0.7 (22D) and 0.769 (1/D). It seems that eitherD
1H52 or DH51 is really a rough estimation as pointe
out by Peitgen, Jurgens, and Saupe@17# earlier.

V. SUMMARY

From the above analysis, one may draw the followi
conclusions. If one describes a surface of a self-affine st
ture with fractal dimension the apparent fractal dimens

FIG. 8. ~a! L(Dc/c0) vs Dc/c0 relationship; ~b! DV/V0 vs
Dc/c0 relationship.
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might be yardstick dependent. However, the depende
cannot be distinguished as theH value is near unity. On the
other hand, if one describes a surface of self-similar str
ture, with roughness exponent, the apparentH value might
be yardstick dependent. However, the dependence cann
correctly appraised when theD value is near unity.

In principle, comparing the linearity of theH vs l and the
D vs l relation in double-logarithmic plots, one may make
appraisal as to which structure, either self-affine or s
similar, is the real one. However, if the surface appears
flatten, this experimental method is not sensitive; one sho
then adopt other experimental methods, say, direct obse
tions by means of scanning electron microscopy, scann
tunneling microscope, etc. to make the appraisal.

In addition, comparing Figs. 1 and 3, we can see that
dependence ofH(D,l / l 0) on l / l 0 is weaker than that o
D(H,l / l 0) on l / l 0 . Then, the measurement of the roughne
exponent is a less sensitive way to judge the deviation fr
self-affinity than the fractal dimension to the deviation fro
self-similarity. The range ofH values from 0.5 to 1 is half
the range ofD values from 1 to 2. Using the measured valu
of H parameters to characterize the roughness of mater
ur

er
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the differences among them are easy to be ignored or
universal properties are easy to be exaggerated.

Moreover, for judging a structure to fractal or nonfract
we recommend measuring both the double-logarithmic re
tions of L(«) vs « and of DV vs Dx. If you find thatD is
scale dependent, perhaps it is still a fractal of self-affin
On the other hand, if you find thatH is scale dependent
perhaps it is still a fractal of self-similarity. One may remem
ber that the measured values ofH parameters is less sens
tive; an approximate straight line in Fig. 4 is not rigoro
enough to judge its self-affine property. Comparing with F
4, Fig. 2 is more conclusive, because the nonlinear beha
in Fig. 2 shows that it is not a fractal of self-similar defi
nitely.
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