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Relation between fractal dimension and roughness index for fractal surfaces
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This paper discusses the relation between fractal dimension and roughness index for fractal surfaces of
solids. The applicability of the relation to fracture of Modet#Mode | complex loading is shown. The
applicability to other rough surfaces is discus4&1.063-651%99)09210-7

PACS numbgs): 64.60.Ak, 62.20.Mk

[. INTRODUCTION self-affine rather than self-similar. What will happen if one
measures the self-affine surfaces widhartificially, or de-
Since Mandelbrot, Passoja, and Paulay showed that scribes the self-similar surfaces wittf?
fractured surfaces are fractals in nature and that the fractal If the surface is self-affine, we may determikkfrom
dimension of fractured surfaces correlates well with thedouble logarithmic plots ofAV(t) vs At, whereV is the
toughness of materials, one of [§ has analyzed the critical vertical height and is the horizontal axis. Thety might be

crack extension force with the fractal model and pointed out constant that is independent on the yardstick. On the other
that the true areas of the fractured surfaces in materials agangd, if we measure the fractal dimension of the surface

actually larger than that calculated from a flat fractured suryytificially, the D value might be yardstick dependent. How-
face. Since then, many authors have done experiments Qfyer, in the earlier works on fractuf,8], constanD values

this problem[2—7]. Now, there seems no point in denying paye been obtained in many cases, even though the concept
that the fractured surface is a fractal with self-affine propertyyt se|f-affine property of fractured surfaces has been ac-
[8]. However, the fractal dimension of even the simplest selfxepted generally. Straight lines on double-logarithmic plots
affine fractals is not uniquely defind@®]. The difficulties  poth onAV vs Ax [12,13 and onL(e) vse [1,8] have been
have been illustrated with the case of fractional Brownianyptsined. The reason why may be explained in the following.
motion by Vosg[10] and Pietronerg11]. In his paper{10], For a coastline, one may divide the curve iltsegments

Voss showed tha =2—H in the box counting method and py walking a ruler of sizé along the curve. The length along
1H in the limiting case of the “coastline” method on each segment is

smaller scales and 1 on larger scales. Pietronero came to the

same conclusiohll] by taking normal Brownian motion as | At2 [ AV 2|12

an example. It seems to be already known that the apparent _=[(_> + <_> } ) (1)
fractal dimensiorD of a self-affine surface, and the apparent to to to

Hurst exponenH of a self-similar surface, might be scale

dependent in principle. The questions are as follows: HowJsing the relation

strong are their scale dependences quantitatively? Why did

previous authors obtain nice linear relationships in double AVy  [At\H
logarithmic plots both ot (&) vs & and height vs minimum v (t_> =N"H 2
distance? We need a quantitative analytical relation between 0 0
D andH in materials. To our knowledge, no analytical ex- )
pressions for quantitative analysis of experimental results hadhd the relationsy=v2to, Vo=to,
been done before.
In the case of fractured surfaces, the coastline method V2l At At|2H=2]172
seems nearer to a real situation and discussions on limiting w: E (E) ©)

cases are not enough to show the detailed quantitative rela-
tions betweerD andH in the entire range of scales. In this Then
paper, we use the coastline method to show the quantitative "
relations betwee® andH and show some interesting find-

ings that are not sufficient to be understood by qualitative I Aty o1 1)t At)2H=2]12
and approximate estimation. The applicability of the relation Io - to :5 Io 1+ to G
to fracture of Mode IIt-Mode | complex loading is shown in
Sec. IV.
I I\~P
Il. RELATION OF D TO H FOR SELF-AFFINE SURFACES N(E) = (E) : ®)

Since most real surfaces scale differently in the plane of
fracture and in the vertical direction, it seems that they arel'herefore,
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FIG. 1. Relationship oD(H,At/ty) with I/1,. FIG. 2. Double common logarithmic relationship afl/lg)
with 1/1;.
1 At 2H-2
In 5( 1+ (t_) ” The real fractal dimension (D) is the slope of the straight
D=1- (I) : (6) line connected to the point_(Ly,l/l1y) and the zero point
21In|+— ©0.0.
lo
let lll. RELATION OF H TO D FOR SELF-SIMILAR
SURFACES
1 At\2H-2 : : -
é= _[1+(_) On the other hand, if the fracture surface is of self-similar
2 to structure, one may determirizfrom the double-logarithmic
. plots of theL(I/ly) and I/l relationship. The value ob
and from Eq.(3), we obtain might be a constant and is independent/bf. If one mea-
At1]-1 sures the roughness exponent of the surface, the valte of
- might be yardstick dependent.
21In
Dl 1 E 1|y _0f % Now, with similar derivation, we have
"1 Iné& '
| 2-2D
(i)  WhenAt/ty<1, N=(At/tg) *~(I/1y)~*; and then In Z(I—) —1}
D=1H. H(I,D)=1+ Y : ®
(i)  When At/ty=1, D approaches the limiting value 2 In(—)
2/(1+H). to
Figure 1 shows the relationship Bf(H,At/to) with 1/1,. () Whenl/lp<1
In the double-logarithm plots, the dependenceDofwith 1 In2 1
Al/ly becomes weaker and weakerksises from 0.5 to 1. H(l'D):BJ’ At D ©
One cannot judge whethé& is dependent on the yardstick 2In t_)
0

when theH value rises up to a certain value near ur{ggy .
0.8<H<1) within the accuracy of measurements. In this (i)
case, we cannot distinguish which, self-similarity or self-
affinity, is better to describe the fractal surface. Therefore, in
the early works of fracture, nice fractal dimensions have

been obtained in previous measuremeiits example, see o.5F x 1.1
[8)). 1.9 ﬁ\

Figure 2 shows the relationship b{Al/ly) with I/15. In 0
this figure,L(1/1,) is calculated by (1)~ ° whereD(l) is =
calculated by Eq(7). Because oD a function ofH andl, -0.5F
L(H,l) andl are not linear relations in double-logarithmic
plots. From Fig. 2, the deviation of the linear relationship is -1t
larger whenH=0.5 and smaller whetd=0.8. L(l/1;) is
independent of/l, whenH=1. Similarly, asH approaches -1.5[ .
1 (say 0.8<H<1), we cannot judge whether it is a curve or . . . - . .
a straight line within the range of experimental error. -10 -8 -6 -4 -2 Y 2

Moreover, the values oE(l) are points on thd. vs | log,o (V)
double-logarithmic plots with various values ldf The slope
of the curve does not have the meaning of fractal dimension. FIG. 3. Relationship ofH(D,l/1y) with I/1,.

When I/15=1, the limiting value ofH(l,D)=2/D

1.3
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FIG. 6. A triadic Koch surface.
-2k B
_g -4 -é 0 2 4 a number of known examples for such surfaces, including
log,y (Att;) coastlines and the surface of silica colloid particles or mate-
10 0,

rials used for catalysifl4]. The perimeter of the island in
FIG. 4. Double common logarithmic relationshipm¥(D,1/1;)  the slit-island methodll] is like the coastline, the prototype
with At/t,. of self-similar scaling fractal. This was verified by the lin-
earity in early experimental measurements of fractal dimen-
Figure 3 shows the double-logarithmic plotskfD,1/1,)  Sions for the fractured surfacés—7]. In Mode Il deforma-
and!/l,. Similar to the above, the dependencebbn I/1 tion, the type of deformation constructing a manifestly
becomes weaker and weaker@sipproaches unity. fracture surface for sliding the triadic Koch curve along xhe
Figure 4 shows the double-logarithmic plots of direction per_pendi(_:ular to thgz plane on _Which a Koch
AV(D,l/l,) and At/t,. As above, the deviation from a CUrve crack line exists is possiblalso see Fig. 6 A similar

straight line is smaller and smaller whBrapproaches unity.  Situation may occur on thezplane in Mode Il deformation.
These processes do not need to avoid overhangs. Figure 7 is

a slant crack in the thickness direction. Wher 0, it is a
pure Mode Il loading; where=90°, it is a pure Mode |
loading. It is in mixed complex mode cases, whea &

It is well known that the fractured surfaces are self-affine<90°, where both Modes I and Ill loading exist. This is the
under Mode | deformationsee Fig. & [12]. Recently, usua] case.that the_plane of a through crack in laboratory
Daguier, Bouchaud, and Lapasset reported that even und&Pecimens is often tilted at an angtewith the plate surface
mode | loading, the crack front along the plane of crack®S Shown in Fig. 7. This complex mode of loading leads to
propagation is not self-affine, but self-similar in the case ofa" important effect that, for the Poisson ratio-0.25, the
quenched disorder of impuritidd5]. We would like to re- Minimum applied stress no longer occursaat 90° but at
mind the reader that in the practical cases, there is a great
possibility of the presence of complex mode loading
(Mode I+Mode Ill; Mode I+Mode Il and so oh Presence
of pure mode | or any other kind of mode loading is rare. If
it is under complex mode loading, we need to know whether
the surface is mainly self-affine or self-similar. Qualitative
understanding is not sufficient to explain these processes
Therefore, it is important to find out the quantitative relation-
ship of them and find a way to distinguish whether the sur-
face is mainly self-similar or self-affine experimentally. Fig-
ure 5 is the schematic figure of three modes of deformation
in fracture.

Self-similarity implies the presence of “overhangs” in
the surface structure: to satisfy isotropy, scale invariance of
all possible directions should be presented equally. There ar

" J

IV. THE APPLICABILITY OF THIS RELATIONSHIP
TO MODE Il +MODE | COMPLEX FRACTURE
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FIG. 7. (a) Schematic figure of Mode | and Mode Il mixed
deformation crackyb) roughnessAc, and Ac, componentgnot
crack incremenjsproduced byc; andc, , which are two compo-

FIG. 5. Modes of deformation in fracture. nents of crack front, respectively.
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angles determined by an arcsin functionyfThus, as the H=0.8 D=1.3
crack tilts away from normal to the load or Mode | loading,
it becomes less impossible for the specimen to support the
applied load 16]. In this case, the crack may not propagate
along its original direction; the tilted angke may change to
a'. However, in this paper we do not go into the details of
fracture mechanics. We assumsds the instantaneous tilted
angle. In the condition that the crack front line of Mode | is
self-affine and that of Mode 11l is self-similar, the crack front
line on theXY plane of Fig. 7 is a line of mixed self-affinity
and self-similarity. Mode | deformation produces the in-
plane roughness of the self-affine crack front along xhe
direction and Mode Ill deformation produces the in-plane TF
. . . 09 |
roughness of the self-similar deformation alonghe direc- o8 |
tion of crack propagation, which is perpendicular to the di- 07 |
rection of the Mode Il crack front componerzandx. 06 |
The relation ofL(H,Ac/cy) to Ac/cy is given by the 05 |
vector sum of its two components:
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The relation of AV/V)(D,Ac/cgy) to Ac/cy is also given by
the vector sum of its two components:
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wherec is the length of the crack under mixed mode loading.
Ac, andAc are its roughness components alongxtaady
directions in thexy plane, respectively. 107
Let Ac/co=Ac, /c,o=Ac,/c o for simplicity and as- —
sumeH, =0.8 andD;=1.3 for the case of usual roughness
of fractured surfaces. Relationships of EG)) and(11) are (b) Acle,
shown in Figs. 8) and 8b), respectively. In Fig. &), the
relationship ofL vs Ac/cy is linear whena =0, which cor-
responds to the case of Mode Il loadiffgure self-similay.
The relationship deviates from linearity whenincreases _ )
from 0 to /2, which corresponds to the case of Mode |1l and Mate the approximate slope of the curve in the case/?fat
Mode | mixed loading(self-similar mixed with self-affing ~ the small scale range. It B=1.226, which is just between
The relationship oL vs Ac/c, shows the maximum devia- 1-2 (2-H) and 1.25 (1#). From Fig. &b), we may also
tion from linearity in the case of equal tom/2, which cor- ~ €stimate the approximate slope o_f the curve in t_he_ case of
responds to pure Mode | loadingure self-affing In Fig. a=0 at the small scale range. It is 0.727, which is just be-
8(b), the relationship of\V/V, vs Ac/c, is linear whena  tween 0.7 (2-D) and 0.769 (1D). It seems that eitheD
= /2, which corresponds to the case of Mode | loading™H=2 or DH=1 is really a rough estimation as pointed
(pure self-affing The relationship deviates from linearity Out by Peitgen, Jurgens, and Sayipé] earlier.
when « decreases fromr/2 to 0, which corresponds to the
case of mode | and mode Il mixed loadingelf-affine
mixed with self-similay. The curve of AV/V, vs Ac/cg
shows the maximum deviation from linearity in the casevof From the above analysis, one may draw the following
equals to 0, which corresponds to pure Mode Il loadingconclusions. If one describes a surface of a self-affine struc-
(pure self-similay. Moreover, from Fig. 8), we may esti- ture with fractal dimension the apparent fractal dimension

10° 10™ 10° 107 10" 10° 10’

FIG. 8. (8 L(Ac/cg) vs Ac/cq relationship; (b) AV/Vq vs
Ac/cg relationship.

V. SUMMARY
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might be yardstick dependent. However, the dependencine differences among them are easy to be ignored or the

cannot be distinguished as thevalue is near unity. On the universal properties are easy to be exaggerated.

other hand, if one describes a surface of self-similar struc- Moreover, for judging a structure to fractal or nonfractal,

ture, with roughness exponent, the appatdntalue might ~we recommend measuring both the double-logarithmic rela-

be yardstick dependent. However, the dependence cannot Bens of L(e) vs & and of AV vs Ax. If you find thatD is

correctly appraised when tH2 value is near unity. scale dependent, perhaps it is still a fractal of self-affinity.
In principle, comparing the linearity of the vs| and the ~ On the other hand, if you find that is scale dependent,

D vs| relation in double-logarithmic plots, one may make anPerhaps it is still a fractal of self-similarity. One may remem-

appraisal as to which structure, either self-affine or self.P€r that the measured values téfparameters is less sensi-

similar, is the real one. However, if the surface appears t§/V€: @n approximate straight line in Fig. 4 is not rigorous
flatten, this experimental method is not sensitive; one shoul&noggh to judge its self-a_ffme property. Compa_rlng with F|g.
then adopt other experimental methods, say, direct observé F!g. 2 is more conc_lu;we, because the nonllqeqr beha\_nor
tions by means of scanning electron microscopy, scanninﬁ? Fig. 2 shows that it is not a fractal of self-similar defi-
tunneling microscope, etc. to make the appraisal. itely.

In addition, comparing Figs. 1 and 3, we can see that the
dependence oH(D,l/ly) on I/ly is weaker than that of
D(H,l/lg) onl/ly. Then, the measurement of the roughness One of the authors(C.W.L) would like to thank
exponent is a less sensitive way to judge the deviation froftUNESCO and IAEA for hospitality at the International Cen-
self-affinity than the fractal dimension to the deviation fromter for Theoretical Physics, Trieste, Italy, where this work
self-similarity. The range oH values from 0.5 to 1 is half was finished. This work was supported in part by the Na-
the range oD values from 1 to 2. Using the measured valuestional Natural Science Foundation Commission of China un-
of H parameters to characterize the roughness of materialger Grants Nos. 59671039 and 19874064.
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